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Abstract

Heart sounds entail crucial heart function in-
formation. In conditions of heart abnormalities,
such as valve dysfunctions and rapid blood flow, ad-
ditional sounds are heard in regular heart sounds
(HS), which can be employed in pathology diagno-
sis. These additional sounds, or so-called mur-
murs, show different characteristics with respect to
cardiovascular heart diseases, namely heart valve
disorders. In this work, we propose a two-stage
classifier based on the analysis of the heart sound’s
complexity for murmur identification and classifi-
cation. The first stage of the classifier verifies if
the HS exhibits murmurs. To this end, the chaotic
nature of the signal is assessed using the Lyapunov
exponents. The second stage of the method is de-
voted to the classification of the type of murmur.
In opposition to current state of the art methods
for murmur classification, a reduced set of features
is proposed. This set includes both well-known as
well as new features designed to capture the mor-
phological and the chaotic nature of murmurs. The
classification scheme is evaluated with three clas-
sification methods: Learning Vector Quantization
(LVQ), Gaussian Mixture Models (GMM) and Sup-
port Vector Machines (SVM). The achieved re-
sults are comparable to reported results in literature,
while relying on a significant smaller set of features.

1. Introduction

Auscultation is the preferred method for heart
valve disorders diagnosis [3]. To develop medical
decision support systems based on HS analysis, it
is important to develop automatic analysis tech-
niques, particularly segmentation of heart sound
into its main components (i.e., S1, S2 and mur-

mur) and their recognition. Heart murmur classi-
fication has been attempted with various pattern
recognition methods. Ahlstrom et al. [1] propose
a feed-forward neural network for the discrimina-
tion of systolic heart murmurs. The feature space
suggested by these authors is composed by a to-
tal of 207 features, which are extracted using tech-
niques such as Shannon energy, wavelets, fractal
dimensions and recurrence quantification analysis.
DeGroff et al. [2] suggest a three-layered neural
network based classification scheme to distinguish
between innocent and pathological murmurs in chil-
dren. These authors use the normalized energy
spectrum of the heart sound, with various spectral
resolutions and frequency ranges, as input features.
In [4] a dynamic grown and learn neural network is
applied to classify heart sounds into normal, sys-
tolic murmur and diastolic murmur. Again a high
dimension feature vector is employed resorting to
Daubechies-2 wavelet detail coefficients at the sec-
ond decomposition level. The reported classifica-
tion accuracies of current state of the art murmur
classification methods are in the range of 86% to
97%. It should be mentioned that the reported re-
sults are not directly comparable, since no common
database was applied.

In this work, we propose a two-stage HS murmur
classification scheme based on the analysis of the
signal’s complexity. The first stage of the classifier
is intended for the verification of murmur existence
in a HS. In order to achieve this task, the signal is
transformed into a phase space representation that
is reconstructed using the embedded matrix. The
chaotic nature of the signal, assessed using the Lya-
punov exponents, is applied for murmur presence
assessment. The second stage of the method is de-
voted to the classification of the type of murmur
into seven distinct classes with clinical significance.
In opposition to current state of the art methods
for murmur classification, a reduced and physiolog-
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ically meaningful set of features is proposed. This
set includes both well-known as well as new features
designed to capture the morphological and chaotic
nature of murmurs. Regarding the well-known fea-
tures, it should be mentioned that many of them
are usually not employed in the context of murmur
classification. Finally, the classification scheme is
evaluated with three distinct classification meth-
ods: Learning Vector Quantization (LVQ), Gaus-
sian Mixture Models (GMM) and Support Vector
Machines (SVM). This approach builds on top of
a robust HS segmentation method that has been
recently introduced by the team [7][6].

In section 2, the two-level HS murmur classifica-
tion scheme is thoroughly described. The achieved
results using aforementioned classifiers are then an-
alyzed and discussed in Section 3. Finally, in Sec-
tion 4, conclusions are drawn and possible future
directions are pointed out.

2 Method

The first step in the process of heart murmur
classification is to detect the systolic and diastolic
regions of the heart cycle. The boundaries of mur-
murs are complimentary to the boundaries of S1
and S2 sound components, which correspond re-
spectively to the closing of the atrio-ventricular
valves and the aortic/pulmonary valves. Therefore,
finding S1 and S2’s boundaries renders the starting
and stopping points of the murmurs. In previous
works [7][6], we have introduced a robust HS seg-
mentation method. The subsequent task is to i)
evaluate if the HS sample exhibits murmurs and ii)
to classify their origin. In the proposed approach
these two problems are tackled using two sequen-
tial classifiers based on the chaos assessment of the
signal under analysis.

2.1 Murmur identification

Suppose the heart is considered as a nonlinear
dynamical system X(t + 1) = F [X(t)] that gen-
erates the heart sound time series x(t), t = 1....N .
Signal x(t) can be treated as a one dimensional pro-
jection of the unknown multidimensional dynamic
variable X(t). Phase space transformation of the
one dimensional observation x(t) is performed us-
ing the embedding theorem [6]. The method of de-
lay is applied to reconstruct the attractor in the
multidimensional space or embedding space P , i.e.
yi(t) = [x(t), x(t − τ), ....., x(t − (m − 1)τ))] ∈ IRm,
where i = 1, 2, 3...P and yi(t) are row vectors of
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Figure 1. Average Lyapunov Exponents of 20
clean heart sounds and 15 murmur with length of
88200 samples.

the embedding matrix Y (t). The τ parameter is
estimated as the time lag where the first minimum
occurs in the mutual information between data vec-
tor x(t) and x(t − τ). Using the estimated τ , the
embedded matrix dimension m is estimated by uti-
lizing Cao’s method [5].

The trajectories in the reconstructed phase space
are related to the chaotic natures of a dynamical
system and might be assessed using the Lyapunov
exponent. These reveal how the orbits on the at-
tractor move apart (or together) under the evolu-
tion of the dynamics [6]. To determine the expo-
nents from the embedded matrix, the nearest neigh-
bor points are located to measure their distance
from yi(t0) = [x(t0), x(t0−τ), ....., x(t0−(m−1)τ)).
Let L(t0) be the distance between neighbor points
and the initial points. To quantify this distance,
it is assumed that the rate of growth (or decay) of
the separation between the trajectories is exponen-
tial in time. Furthermore, it is also assumed that
at time t1, the initial length expands or shrinks to
L′(t1). The average of exponential rate of diver-
gence of close orbits is characterized by (1), where
M is the number of repetitions the trajectory takes
in traversing the entire data and denotes the Lya-
punov exponents. The average of 150 exponents are
plotted over a number of neighborhoods in figure 1.

λ =
1

(tM − t0)

M
∑

k=1

log2

L′(tk)

L′(tk−1)
, (1)
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Let λtest be the Lyapunov exponents of the test
heart sound signal, and let λHsMav and λHsav be
the expected Lyapunov exponents of heart sounds,
respectively with and without murmur. Classifica-
tion is performed according to the threshold process
defined in (2).

Heart Murmur =

{

Y es ‖ λtest − λHsM
av ‖ < th

No otherwise
,

(2)

2.2 Murmur classification

Accurate murmur classification demands acqui-
sition of meaningful, discriminative, features. Such
features can be categorized into several classes,
e.g., timing, shape, location, radiation, intensity,
pitch and quality or timbre. In this work, features
are grouped in 3 classes: time domain, frequency-
domain and statistical features.

2.2.1 Time-domain features:

Time domain features (5 features) are extracted
from the original murmur segment, i.e. without
performing any temporal transform. Some fea-
tures, such as timing, intensity, frequency location
over time and shape, are computed in the time
domain. These characteristics are obtained by
computing duration, loudness, and jitters [7][8].
Besides these features zero crossing rate and a new
features, transition ratio, are also included.

Zero crossing rate (zcr): It is related to the
density occurrence of samples over time, and
known to be a descriptor of frequency and timbre,
computed as in (3).

zcr =
1

ni − ne

ne

∑

j=ni

|sgn(x(j)) − sgn(x(j − 1))|,

(3)
where ni and ne are starting point and stoping
point sample, respectively.

Transition ratio: It is a new feature to know
the morphology of the segments. It is computed in
a form of the ratio between two times measures as
in (4).

transition ratio =
Tasc

Tdsc

, (4)

where Tasc is the transition time taken from the
first minimum energy, in x(t)2, to the maximum
energy, and Tdsc one is from the maximum to the
second minimum energy.

2.2.2 Frequency domain features:

Frequency-domain features capture characteristics
of the signal’s timbre and morphology. In order to
compute those features, the power spectrum of the
signal is computing resorting to the periodogram.
10 frequency-domain features are extracted, as
explained below.

Spectral power : Spectral power is computed
through periodogram via summation over fre-
quency. Since the power of murmurs spreads
across various frequency regions (0-400Hz). There-
fore, to examine the dominance of spectral power
at specific frequencies, spectral power is computed
in four frequency bands: 0-0.1kHz; 0.1-0.2kHz,
0.2-0.3kHz, and 0.3-0.4kHz. Hence, 4 features
as the powers in four bands are computed by
summing over frequency.

Spectral power based features : From the basis
of the above power spectrum following features
are carried out which mainly provides murmur’s
morphology, shapes and fundamental frequencies:
centroid, flux, skewness, kurtosis for shape and
morphologies. While, spectral peaks are the
dominant frequencies [8].

2.2.3 Statistical domain features:

The distribution and scattering of samples in the
murmur is observed in using histograms and phase
space. The following features (3 features) are
computed:

Skewness and Kurtosis : Two measures, skew-
ness and kurtosis, are computed through the
histogram of the heart murmur segment.

Chaos : The maximum of Lyapunov exponents,
from (1), is taken as the quantifier of the degree of
chaos in the murmur segments.

3 Results and Discussions

Heart sounds containing murmurs were collected
from the Cardiothoracic Surgery Center of the Uni-
versity Hospital of Coimbra. Acquisition was per-
formed with an electronic stethoscope from Med-
itron. The stethoscope presents excellent signal-
to-noise ratio characteristic and an extended fre-
quency range (20 - 20,000 Hz). Sound samples were
recorded for the maximum duration of one minute,
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using a 16-bit ADC at 44.1kHz sampling rate. To-
tal 15 normal heart sound, and 51 heart sound with
murmur signals which corresponding to 2047 beats,
were collected.

As described previously, a two-stage hierarchical
classification approach was carried out. The one
second length of heart sound is taken to assess as
HS, or HS with murmur. In the first stage, clean
and murmur sounds are separated. In the prepared
database, at this stage, sensitivity and specificity
of 100% are achieved.

In the second classification stage, sounds clas-
sified as murmur are further categorized into the
following 7 classes: 1) Aortic Regurgitation (AR),
2) Aortic Stenosis (AS), 3) Mitral Regurgitation
(MR), 4) Pulmonary Regurgitation (PR), 5) Pul-
monary Stenosis (PS), 6) Subaortic Stenosis +
Ventricular Septal Defect (SAS+VSD), 7) Systolic
Ejection (SE). Here, clean sounds incorrectly clas-
sified as murmur sounds in the first stage will be
assigned to one of the seven defined categories.

Three classification methodologies (LVQ, GMM
and SVM) were employed. In LVQ and GMM,
the classifiers were trained with 70% of the whole
dataset, whereas SVM used 50%.

Table 1. Performance in terms of sensitivity (SE)
and specificity (SP) the classifiers.

Murmur

Class


Sensitivity (%)
 Specificity (%)


LVQ
 GMM
 SVM
 LVQ
 GMM
 SVM


AS
 89.36
 90.84
 89.67
 82
 95.11
 94.31


AR
 79.24
 93.21
 91.59
 80.78
 98.10
 90.23


MR
 74.23
 95.81
 93.58
 74.87
 91.24
 89.92


PR
 62.23
 91.56
 95.54
 77.86
 89.57
 91.88


PS
 100
 89
 100
 87.43
 100
 100


SAS
+
VSD
 81.34
 91.89
 93.23
 76.55
 86.33
 91.23


SE
 84
 92.50
 98
 83
 100
 100


Overall
 81.48
 91.83
 93.65
 80.35
 94.33
 93.93


The results achieved are shown in the Table 1
in the form of classification sensitivity (SE) and
specificity (SP), respectively. From the table it can
be observed that the overall performance of GMM
and SVM is nearly similar. Regarding sensitiv-
ity, GMM outperformed SVM in the AR and MR
classes, whereas the reverse occurred in the PR, PS
and SE categories. As for specificity, both algo-
rithms performed similarly in most classes, except
for AR, where GMM stood out, and SAS+VSD,
where SVM was better.

4 Conclusions

A two-stage classifier based on the analysis of the
heart sounds complexity for murmur identification
and classification was introduced. The first stage
of the classifier verifies if the HS exhibits murmurs.
To this end, the chaotic nature of the signal is as-
sessed using the Lyapunov exponents. The second
stage of the method is devoted to the classification
of the type of murmur. For this purpose, a set
of well-known and some new features designed to
capture the morphological and the chaotic nature
of murmurs. The classification scheme is evaluated
with three classification methods: Learning Vec-
tor Quantization (LVQ), Gaussian Mixture Mod-
els (GMM) and Support Vector Machines (SVM).
While using reduced featurs data set, the results
are significant and comparable to the past works.

Acknowledgements

This work was performed under the project
SoundForLife (PTDC/EIA/68620/2006) financed
by FCT (Fundação para a Ciência e a Tecnologia).

References

[1] C. Ahlstrom, P. Hult, P. Rask, J. Karlsson, E. Ny-
lander, U. Dahlstro, and P. Ask. Feature extraction
for systolic heart murmur classification. Annals of

Biomed. Engg., 34(11):1666–1677, 2006.
[2] C. G. DeGroff, S. Bhatikar, J. Hertzberg, R. Shan-

das, L. Valdes-Cruz, and R. L. Mahajan. Artifi-
cial neural network-based method of screening heart
murmurs in children. Circulation, 103:2711–2716,
2001.

[3] B. Erickson. Heart Sound And Murmurs: Across

the Lifespan. Mosby, inc. edition, 2003.
[4] C. N. Gupta, R. Palaniappanb, S. Swaminathan,

and S. M. Krishnan. Neural network classification of
homomorphic segmented heart sounds. J. of applied

soft computing, 7:286–297, 2005.
[5] H. Kantz and T. Schreiber. Nonlinear Time Series

Analysis. Cambridge university press edition, 1997.
[6] D. Kumar, P. Carvalho, M. Antunes, J. Henriques,
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